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Abstract—Delegated Proof-of-Stake (DPoS) is an efficient, decentralized, and flexible consensus framework available in the
blockchain industry. However, applying DPoS to the decentralized Internet of Things (IoT) applications is quite challenging due to the
nature of IoT systems such as large-scale deployments and huge amount of data. To address the unique challenge for IoT based
blockchain applications, we present Roll-DPoS, a randomized delegated proof of stake algorithm. Roll-DPoS inherits all the advantages
of the original DPoS consensus framework and further enhances its capability in terms of decentralization as well as extensibility to
complex blockchain architectures. A number of modern cryptographic techniques have been utilized to optimize the consensus process
with respect to the computational and communication overhead.
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1 INTRODUCTION

According to the recent data from Juniper Research [32], the
total number of connected Internet of Things (IoT) sensors
and devices is set to exceed 50 billion by 2022 and the
massive growth in connected devices over the next four
years is mainly driven by edge computing services. With
rapid increase of connected devices and services, IoT device
manufactures and application developers are looking for a
secure method for automating processes and exchanging in-
formation in real time. Blockchain appears to be a promising
solution for enabling large-scale IoT applications in a decen-
tralized and autonomous manner. As an open, transparent,
immutable and distributed ledger, a blockchain is able to
record transactions among IoT devices in a verifiable and
permanent way. The self-executing smart contracts further
offer a standardized method to accelerating data exchange
and realizing workflow automation for smart devices with-
out any interference and coordination of third parties.

The consensus protocol, which allows secure updating
of a distributed shared state, is the core component of a
blockchain. Achieving consensus ensures that all nodes in
the network agrees upon a consistent global view of the
blockchain state. The two key properties of a consensus pro-
tocol are: i) Safety/Consistency: All honest nodes produce the
same output and the outputs produced by the honest nodes
are valid; and ii) Liveness: All honest nodes in consensus
eventually produce a value. A secure and robust consensus
protocol needs to be tolerate a wide variety of Byzantine
behaviors, including, but not limited to, failures of network
nodes, partition of the network, message delay, out-of-order
and corruption. While various consensus mechanisms have
been extensively studied in the distributed systems commu-
nity for closed systems for decades, the public, permission-
less blockchains have revitalized the field and resulted in
a multitude of new designs during the past few years. The
interested reader is referred to [3], [14] for good literature
surveys and recent progress regarding to this topic.

It is well-known that designing a secure and robust
consensus protocol for permissionless blockchains is quite
challenging. The introduction of resource-constrained and
heterogeneous IoT devices has added additional layer of
design complexity. Among existing blockchain consensus
protocols in the literature, the Delegated Proof-of-Stake
(DPoS) framework proposed by Larimer [33] sheds some
light on blockchain based IoT applications in practice. In
DPoS, stakeholders elect a certain number of network nodes
(e.g., 21) as block producers, which are responsible and re-
warded for generating and adding blocks to the blockchain.
Each block producer takes turn proposing a block and
distributes (partial) rewards back to the stakeholders. The
election of block producers is a continuous process so that
they have a strong incentive to provide high-quality service
for maintaining their roles as block producers.

By electing a small group of powerful nodes to execute
the expensive consensus process on behalf of the entire
network, DPoS is able to accommodate the resource lim-
itations and heterogeneity of IoT devices. However, the
DPoS framework has some shortcomings when used in
practice. Firstly, the block producer group is relatively static
so that sufficient decentralization may never be achieved.
Secondly, it is quite difficult, if not impossible, for the
DPoS framework handling complex blockchain architec-
tures where multiple, large-scale blockchain applications
run simultaneously. To address these issues, we propose
Roll-DPoS, a randomized and scalable variant of the DPoS
framework. Roll-DPoS runs in epochs and combines mul-
tiple modern cryptographic techniques such as distributed
key generation, BLS threshold signature, random beacon,
etc., together with the Practical Byzantine Fault Tolerance
(PBFT) consensus protocol to realize random selection of
block producers from a dynamically updated candidate
pool in each epoch and ensure instant finality for the
proposed blocks simultaneously. In addition, Roll-DPoS
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supports complex blockchain architectures by auto-scaling
the candidate pool and scheduling multiple group of block
producers with respect to the number of provisioned sub-
chains in the system. When compared to the original DPoS
framework, Roll-DPoS achieves a good trade-off in terms of
decentralization, safety and elasticity.

The rest of the yellow paper is organized as follows.
Section 2 give an overview of the cryptographic building
blocks in the Roll-DPoS design as well as the DPoS frame-
work, followed by the detailed description of the four Roll-
DPoS core components and workflow in Section 3. Section 4
describes the implementation parameters and optimization
techniques used in the short-lived BLS threshold signature
scheme. Finally, we conclude this yellow paper in Section 5.

2 PRELIMINARIES AND CRYPTOGRAPHIC BUILD-
ING BLOCKS

2.1 Threshold Secret Sharing

The notion of threshold secret sharing was introduced in-
dependently by Shamir [45] and Blakley [9] in 1979. For
distributing shares of a secret x among n entities, a trusted
dealer TD randomly chooses a polynomial f(z) of degree t
over Zq :

f(z) =
t∑
i=0

aiz
i,

where the secret x is stored at the constant term a0, i.e.,
f(0) = a0 = x. TD then computes the secret share xi =
f(idi) (mod q) for each entity, where idi is an identifier of
entity Pi, and transfers xi to Pi through a secure channel.
Upon receiving the secret shares, any group of t+1 entities1

is able to recover the secret using the Lagrange interpolation
formula:

f(z) =
t+1∑
i=1

xiλi(z),

where λi(z) =
∏t+1
j=1,j 6=i

z−idj

idi−idj
(mod q). Note that the se-

cret x can also be written as x = f(0) =
∑t+1
i=1 xiλi(0)

(mod q). Therefore, the secret x can be recovered only if
at least t + 1 shares are combined and the coalition of less
than t+ 1 entities cannot derive any information about x.

2.2 Feldman’s Verifiable Secret Sharing

A basic threshold secret sharing schemes is defined to solely
resist passive attacks in which all entities involved run the
protocol as prescribed by the scheme. In practice, however,
a secret sharing scheme might need to withstand active
attacks. To this end, Chor et al. [18] introduced the concept
of verifiable secret sharing (VSS), which aims to thwart the
following two types of active attacks:

• A malicious dealer might send incorrect shares to
some or all of the entities during the share distri-
bution phase;

• Malicious entities might submit incorrect shares dur-
ing the secret reconstruction phase.

1. Without loss of generality and for easy exposition, we consider a
group consisting of the first t+ 1 entities.

A well-known VSS scheme under the discrete logarithm
setting is due to Feldman [24], which is an extension of
Shamir’s scheme and requires the dealer to send additional
values to all the entities so that each share can be checked
for validity. More specifically, let p and q be two large primes
and g ∈ Zp be an element of order q (i.e., q|p−1). Feldman’s
VSS scheme achieves the share verifiability as follows:

• Witness Generation: TD randomly chooses a poly-
nomial f(z) and distributes the secret shares xi’s as
described in Section 2.1. Moreover, TD computes wit-
nesses Wi = gai (mod p) for i ∈ [0, t] and publishes
those Wi’s in some public domain.

• Share Verification: Upon receipt of the share xi,
entity Pi verifies its validity by checking the equation

gxi =
∏t
j=0W

idj
i

j (mod p).

Feldman’s VSS scheme is secure under the discrete loga-
rithm assumption and any set of t entities is not able to find
the secret from their shares, given that they can see all the
witnesses Wi, i ∈ [0, t].

2.3 Pedersen’s Distributed Key Generation

In decentralized applications where a TD does not exist, a
distributed key generation (DKG) protocol is an essential
component for generating cryptographic keys and initial-
izing the cryptosystem. Pedersen [44] proposed a simple
DKG scheme in which all the entities run multiple parallel
instances of the Feldman’s VSS scheme and collaboratively
generate shares that are corresponding to the Shamir’s secret
sharing of a random value. For a distributed system with
n entities P1, . . . , Pn, Pedersen’s DKG protocol works as
follows:

• Each Pi chooses at random a polynomial fi(z) of
degree t over Zq :

fi(z) = ai0 + ai1z + · · ·+ aitz
t,

where fi(0) = ai0 = x̄i is a random secret that Pi
selects. Each Pi computes the shares x̄ij = fi(Idj)
(mod q) for j ∈ [1, n], j 6= i and sends x̄ij to Pj
through a secure channel. Moreover, Pi computes
the witnesses Wik = gaik (mod p) for k ∈ [0, t] and
broadcasts them into the system. Denote Wi0 by ȳi.

• Each Pj verifies the shares received from other enti-
ties by checking the equation for i ∈ [1, n]:

gxij =
t∏

k=0

W
idk

j

ik (mod p).

If the verification fails for an index i, Pj broadcasts
a complaint against Pi. Each Pi who receives a com-
plaint from Pj broadcasts the value xij .

• Each entity marks as disqualified a peer that either
receives at least t + 1 complaints or answers a com-
pliant with a false value, and then creates a set QUAL
which contains all the qualified entities.

• Each Pi computes its secret share as x′i =∑
j∈QUAL xij and the system private key x, which

is not known to any entity, is equal to
∑
i∈QUAL x̄i

(mod q).
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• For each disqualified entity Pi, any set of t+1 entities
can recover its corresponding secret ai0 and compute
ȳi = gai0 (mod p). For other entities, we have ȳi =
Wi0. The system public key is then computed as y =∏
i∈QUAL ȳi (mod p). Note that y = gx.

In Pedersen’s DKG scheme, the private key x is uniquely
defined at the end of the protocol and no coalition of up
to t < n/2 adversaries can prevent its recovery. Although
Gennaro et al. [31] pointed out that an adversary can control
to some extent the distribution of public keys generated
by the Pedersen’s DKG scheme, the bias generally does
not weaken the hardness of solving the discrete logarithm
problem for the generated public key [27], [28].

2.4 Bilinear Pairing

Let N be a positive integer and G1 and G2 be additively-
written groups of order N with identity O, and let GT be
a multiplicatively-written group of order N with identity 1.
A bilinear pairing – or pairing for short – is a computable,
non-degenerate function:

e : G1 ×G2 7→ GT ,

satisfying the additional properties. The most important
property for cryptographic applications is so-called bilinear-
ity, namely:

e(aP, bQ) = e(P, bQ)a = e(aP,Q)b = e(P,Q)ab,

for all P ∈ G1,Q ∈ G2 and a, b ∈ ZN . In practice, the groups
G1 and G2 are subgroups or quotient groups of an elliptic
curve defined over a finite field Fq or one of its extensions
and GT is a subgroup or quotient group Fqk , where k is
called the embedded degree. The security of pairing-based
cryptography requires that the discrete logarithm problem
on G1,G2 and GT is sufficiently difficult. For more details
about the bilinear pairing and its cryptographic applica-
tions, the interested reader is referred to [26], [43].

2.5 The BLS Signature Scheme and Its Extensions

2.5.1 The BLS Signature Scheme
In [13], Boneh et al. described a simple, deterministic short
signature scheme, namely the BLS short signature. It works
in any Gap Diffie-Hellman (GDH) group and requires a
hash function from the message space onto the group. Let
g1, g2 and gT be an arbitrary generator of G1,G2 and GT ,
respectively, and H1 : {0, 1}∗ 7→ G1 be a hash function
with values in G1. The BLS signature scheme consists of the
following three algorithms:

• KeyGen(): Choose a random α
R←− ZN and set

h ← gα2 ∈ G2 and output a private/public key pair
(sk, pk) = (α, h).

• Sign(sk,m): Given a private key sk and a message
m ∈ {0, 1}∗, output σ ← H1(m)sk ∈ G1. Note that
the signature σ is a single group element.

• Verify(pk,m, σ): Given a public key pk, a message
m, and a signature σ, check whether e(σ, g2) =
e(H1(m), pk) and output ”accept” or ”reject” accord-
ingly.

Due to the simple mathematical structure, the BLS signature
scheme supports a variety of extensions [10], [12], including
threshold signatures, multisignatures, aggregate signatures,
and blind signatures.

2.5.2 The BLS Threshold Signature Scheme

In [12], Boneh et al. showed that one can build a non-
interactive threshold signature scheme based on the plain
BLS signature scheme and the Shamir’s secret sharing.
For a system with n entities P1, . . . , Pn , t of which may
be corrupted, and a trusted dealer TD, the BLS threshold
signature consists of the following five algorithms:

• KeyGen(): TD chooses a random α
R←− ZN and set

h← gα2 ∈ G2. The system private/public key pair is
(sk, pk) = (α, h). TD also generates a random poly-
nomial f(z) ∈ Zq of degree t, such that f(0) = sk.
TD then computes n private key shares ski = f(Idi)
and public key shares pki = gski2 for i ∈ [1, n]. The
private key share ski as well as the public key shares
pkj , j ∈ [1, n], j 6= i are sent to Pi through a secure
channel.

• SignShareGen(ski,m): Given a private key share
ski and a message m ∈ {0, 1}∗, output the signature
share σi ← H1(m)sk ∈ G1.

• SignShareVerify(pki,m, σi): Given a public key
share pki, a message m, and a signature share σi,
check whether e(σi, g2) = e(H1(m), pki). If the ver-
ification is successful, σi is a valid signature share
received from Pi.

• SignShareCombine(σi1 , . . . , σit+1
): Given t + 1

valid signature shares σi1 , . . . , σit+1
, {i1, . . . , it+1} ⊂

{1, . . . , n}, output the signature σ =
∏t+1
j=1 σ

λij

ij
,

where λik =
∏t+1
j=1,j 6=k

0−Idik

Idij
−Idik

, k = 1, . . . , t + 1 are
Lagrange coefficients.

• Verify(pk,m, σ): Given a public key pk, a message
m, and a combined signature σ, check whether
e(σ, g2) = e(H1(m), pk) and output ”accept” or
”reject” accordingly.

2.6 Delegated Proof of Stake

Delegated Proof of Stake (DPoS) is a robust and flexible
blockchain consensus mechanism invented by Larimer [33]
in 2014, which leverages the voting power of the stakeholder
to resolve consensus issue in a fair and democratic manner.
DPoS was first applied by Larimer to power the blockchain
project BitShares [8] and further refined in his subsequent
projects Steem [48] and EOS [23]. Other blockchain projects,
such as Ark [1], Lisk [35], Tezos [49], etc., also adopted the
similar DPoS framework with certain feature changes.

Unlike the traditional Proof of Stake (PoS) system that
involves the participation of the entire network to validate
a transaction, DPoS concentrates block production in the
hands of a limited number of semi-trusted delegates. The
DPoS consensus framework consists of the following four
major steps as shown in Fig. 1:

1) Block Producer Election. The cryptocurrency token
holders cast votes to elect an odd number of users
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Fig. 1. The Delegated Proof of Stake (DPoS) Framework

to produce blocks. The number of votes are propor-
tional to the voter’s stake and a fixed number of top
candidates that receive the most votes become the
block producers.

2) Block Production. The block production happens
in rounds and is conducted in a round-robin man-
ner among block producers. At the beginning of
each round, the block producers are shuffled and
assigned a time slot in which they should produce a
block. In the case that a block producer fails to create
a block during its time slot, the block is skipped and
the transactions within are included in the next one.

3) Block Reward Distribution. The block producer
receives a block reward for successfully producing
a block and spreads the (partial) block reward to its
voters as dividends.

4) Block Producer Reelection. A reelection process
is performed at the end of each round and block
producers can be voted in or out each round by the
cryptocurrency token holders.

It is not difficult to find out that the DPoS consensus
framework is essentially a liquid, representative democracy
with token holder suffrage [47], which enables it to work
well naturally in a consortium-like setting where a certain
degree of trust has been placed in a small group of entities.
For DPoS based public blockchains, the viability of a system
depends on whether byzantine producers can be promptly
removed through a decentralized voting process.

3 ROLL-DPOS: A RANDOMIZED DELEGATED
PROOF OF STAKE CONSENSUS ALGORITHM

In this section, we present the design of Roll-DPoS, a ran-
domized delegated proof of stake consensus algorithm, in
great detail.

3.1 Design Rationale
Like other consensus algorithms, the DPoS consensus
framework also makes certain trade-offs among safety, scal-
ability, and decentralization of block production to address
the scalability trilemma. By limiting the number of block
producers, DPoS is able to reduce the computational and

communication overhead significantly during the consen-
sus process, thereby leading to fast block production, high
throughout, and low latency. While there are still heated
discussions regarding to the design principle of DPoS (see
[19], [34] for examples), we believe that the DPoS consensus
framework fits well for blockchain based IoT applications
due to the following main reasons:

• It is quite difficult, if not impossible, for IoT de-
vices performing complex consensus protocols, due
to their constrained computational and storage re-
sources.

• It is not energy and throughput efficient for IoT
devices running a consensus protocol across the en-
tire network, due to their constrained power and
bandwidth.

However, considering the salient characteristics of IoT sys-
tems such as large-scale deployments and huge amount of
data, the DPoS consensus framework needs to be further
enhanced to accommodate more complex blockchain archi-
tectures and decentralized IoT applications, which leads to
the design of Roll-DPoS, a randomized delegated proof of
stake consensus algorithm.

A high-level description of Roll-DPoS is illustrated in
Fig. 2. In a nutshell, Roll-DPoS initiates a candidate pool
through a community voting process with the aid of the
Ethereum blockchain and nodes that receive the most num-
ber of votes from the community become the potential
block producers. The Roll-DPoS consensus algorithm runs
in epochs and each epoch is further composed of multiple
sub-epochs. At the beginning of the epoch, a fixed number
of block producers are randomly chosen from the candidate
pool using a cryptographic hash function as well as a
random beacon that is generated from the previous epoch.
The selected block producers then perform the Pedersen’s
DKG protocol to generate short-lived, epoch-specific private
key shares that will be used to sign the messages in the
Practical Byzantine Fault Tolerance (PBFT) process [15] with
the short-lived BLS threshold signature scheme. The four
core components (CCs) of the Roll-DPoS design are detailed
in the following subsections.

3.2 CC-I: Ethereum Assisted Bootstrapping
The Roll-DPoS protocol is bootstrapped with the aid of
the Ethereum blockchain and composed of the three steps
as detailed below. The bootstrapping phase results in the
selection of n block producers for the first epoch through a
community-based voting mechanism.

3.2.1 Step 1: Block Producer Self-Nomination
In Step 1, any node can self-nominate in the community and
register to become a potential block producer. During this
phase, a node usually sets up a campaign website (see [16]
for an example) for attracting community members to vote
for him/her, which specifies the software and hardware
resources available for hosting block producer servers as
well as the terms for block reward distribution, among
many other things. The self-nomination process must be
completed before all the community members are able to
start the voting process.
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Fig. 2. A High-Level Overview of the Roll-DPoS Consensus Algorithm

3.2.2 Step 2: Block Producer Candidate Pool Formation
In Step 2, the community members vote for an initial block
producer candidate pool of N nodes by sending special
Ethereum voting transactions that contain ‘0’ in the VALUE
field and ‘vote’ in the DATA field. Each transaction indicates
that a community member (i.e., an ERC-20 token wallet
holder) has pledged backing towards a candidate and all
the ERC-20 tokens in the wallet will be tallied at the
end of a pre-defined cut-off time. At that moment, the
Ethereum token contract freezes all the accounts and takes
a snapshot of the beginning balances for all the ERC-20
token holders. Moreover, a vote counting process is exe-
cuted and the highest-backed set of N candidates, denoted
by {C(1)

1 , . . . ,C(1)
N }, are selected to form the initial block

producer candidate pool.

3.2.3 Step 3: Block Producer Selection
In Step 3, n block producers, denoted by {BP(1)

1 , . . . ,BP(1)
n },

are chosen from the candidate pool as the bootstrapping
nodes for the first epoch using a deterministic random bit
generator (DRBG) [4]. DRBG can be efficiently realized with
a block cipher or cryptographic hash function (see [2] for
an example) and a nothing-up-my-sleeve number, e.g., the
hash of the string “IoTeX”, is used as the initial seed s0
for the DRBG. The n bootstrapping nodes are then selected
by sorting the output of DRBG. More specifically, each
candidate computes

o
(1)
i = DRBG(s0, pk

(1)
i , 1), i = 1, . . . , N,

where pk(1)i is the public key of the candidate C(1)
i and ‘1’ is

the epoch number of the first epoch, followed by the sorting
of all o(1)i ’s and selection of the top n candidates as the initial
block producers.

3.3 CC-II: Short-Lived BLS Threshold Signature Based
PBFT Consensus
The Roll-DPoS protocol utilizes a short-lived BLS threshold
signature based PBFT variant to reach consensus and instant
finality for block proposals among block producers in each
epoch, which takes advantage of a short-lived BLS threshold
signature scheme at the 70-bit2 security level coupling with
a distributed key share generation process at the beginning
of each epoch.

3.3.1 Distributed Key Share Generation
At the beginning of each epoch, n block producers of the
current epoch jointly perform the Pedersen’s DKG scheme
(see Section 2.3 for details). As a result, each block producer
obtains a 158-bit key share of an unknown group private
key. These private key shares will be used to sign the
PREPARE and COMMIT messages with the BLS threshold
signature scheme by block producers during the PBFT con-
sensus process. To further amortize the cost of DKG, an
epoch has been further divided into L sub-epochs and the
DKG scheme is only being executed once per epoch.

2. The implementation of the short-lived BLS threshold signature
utilizes the bilinear pairing over a Miyaji-Nakabayashi-Takano (MNT)
curve [42] with embedding degree 6.
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3.3.2 PBFT Consensus with BLS Threshold Signature
The non-interactive BLS threshold signature scheme (see
Section 2.5.2 for details) has been integrated into the PBFT
consensus process of the Roll-DPoS protocol for improv-
ing performance. In Roll-DPoS, block producers take turns
proposing blocks in each sub-epoch. There is only one
legitimate block producer at any given time and other
block producers act as the block validators. Upon receiving
and validating a block proposal, a validator utilizes the
SignShareGen(·) algorithm to sign a PREPARE message
with its own private key share ski, where the PREPARE
message can be either ‘YES’ or ‘NO’, depending on the
validation result of the block proposal. The validator then
broadcasts the signed PREPARE message to the network.
Once the number of ‘YES’ in collected PREPARE messages
exceeds a pre-defined threshold, the validator aggregates
all the signature shares and verifies the aggregate signature
using the SignShareCombine(·) and Verify(·) algorithms,
respectively. If the aggregate signature passes the verifica-
tion, the validator broadcasts a signed ‘YES’ as the COMMIT
message to the network, which will be processed similarly
as the PREPARE message by other validators. A validator
appends the proposed block to the blockchain only when
the block proposal passes the PBFT consensus process.

3.4 CC-III: Random Beacon Enabled Block Producer
Rotation
In Roll-DPoS, block producers will be randomly selected
from a candidate pool using the DRBG at the beginning of
each epoch. For the jth epoch, each candidate computes

o
(j)
i = DRBG(sj−1, pk

(j)
i , j), i = 1, . . . , N,

where sj−1 is the random beacon generated by the block
producers during the (j−1)th epoch using the BLS threshold
signature scheme. pk(j)i is the public key of the candidate
C

(j)
i and j is the current epoch number. All the o(j)i ’s are

then sorted and the top n candidates are selected as the
block producers for the current epoch. The generation pro-
cess of random beacons is similar to that in DIFINITY [29].
Besides proposing blocks in the jth epoch, a block producer
i also uses the SignShareGen(·) algorithm to generate a
random beacon share s(i)j as follows:

s
(i)
j = SignShareGen(sk

(j)
i , sj−1‖j),

where sk(j)i is the private key share of the block producer
i in the jth epoch and sj−1 is the random beacon of the
previous epoch. sk(j)i will also be included as of the block
by the block producer. Once the number of random bea-
con shares exceeds the predefined threshold, every node
in the candidate pool is able to compute and verify sj
using the SignShareCombine(·) and Verify(·) algorithms,
respectively, and then obtain consistent global view regard-
ing to the block producers for the next epoch. In the case
that the number of random beacon shares contained in the
blockchain is less than the threshold at the end of epoch, the
random beacon will be updated pseudorandomly, i.e.,

sj = H(sj−1‖j),

where H(·) is a cryptographic hash function.

3.5 CC-IV: Auto-Scaling Candidate Pool for Complex
Blockchain Architectures

The IoTeX blockchain is composed of a root chain and
unlimited number of on-demand provisioned sidechains.
To support this complex blockchain architecture as well as
large-scale IoT DApps, we design an auto-scaling candidate
pool to power consensus process for sidechains in Roll-
DPoS. The basic idea is to dynamically adjust the size
of the candidate pool based on the number of sidechains
running simultaneously in the system. In our design, the
blockchain nodes in the candidate pool has an option to
become the block producers for subchains if they are not
being selected as the block producers for the root chain at
the current epoch. As a result, the candidate pool is divided
into multiple subgroups, one of which acts as block pro-
ducers for the root chain and others for different subchains.
Whenever the number of idle nodes (i.e., those nodes are
not block producers for either root chain or sidechains) is
larger than (resp. less than) a predefined threshold, a certain
number of blockchain nodes will be evicted from (resp. filled
into) the candidate pool. The auto-scaling candidate pool
is able to power large-scale blockchain-based IoT systems
by enabling a significant number of nodes participating in
the consensus process for different applications. Our novel
design not only solves the scalability issues of sidechains,
but also enables more blockchain nodes to become block
producers and receive rewards.

4 IMPLEMENTATION NOTES

We implement the short-lived BLS threshold signature
scheme using the Tate pairing over a MNT curve with
embedding degree 6 [42]. The elliptic curve is defined by
the equation

E/Fp : y2 = x3 − 3x+ b

with the following parameters represented in hexadecimal:

p = 7ddca613 a2e3ddb1 749d0195

bb9f14cf 44626303 (159-bit)

b = 21c3f3ac 7864d1f1 f99273d0

f828d365 7d8cfd4e (158-bit)

n = 3eee5309 d171eed8 ba4e12de

f44414fd 17d369b7 (158-bit)

Note that the order of the curve E has a cofactor h = 2 (i.e.,
#E(Fp) = 2 · n) and these parameters can be represented
in terms of an 80-bit integer z = dbd7d316ead514bb8f95
(in hexadecimal) such that n = (z2 − z + 1)/3 and p =
2n + z. Since the MNT curve in question has embedding
degree k = 6, pairings are computed over points in E(Fp6).
For efficiency reasons, we can restrict the first input to be a
point in E(Fp)[n] and compress the second input in E(Fp6)
to a point in a quadratic twist E′(Fp3). Let D ∈ Fp3 be
a quadratic non-residue over Fp3 . A quadratic twist of E,
denoted by E′, over Fp3 for which n | #E′(Fp3) is defined
by the following equation [30]

E′/Fp3 : Dy2 = x3 − 3x+ b.
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The injective group homomorphism φ : E′(Fp3) → E(Fp6)
is given by (x, y) 7→ (x,

√
Dy), which allows us to map

points in the quadratic twist E′(Fp3) to points in E(Fp6).
We propose a multibase variant of Miller’s algorithm to

compute the Tate pairing efficiently using the Jacobian coor-
dinates and all the improved algorithms and optimization
techniques are detailed in Appendix A.

5 CONCLUSION

In this yellow paper, we describe the design rationale as well
as the four core components of the Roll-DPoS consensus
scheme that aims to achieve good trade-off among decen-
tralization, safety and elasticity when running consensus
in large-scale blockchain-based IoT systems. Roll-DPoS is
designed using the modern cryptographic techniques and
keeps in mind various restrictions of IoT devices and appli-
cations. By enabling the random selection of block produc-
ers as well as auto-scaling the candidate pool for handling
complex blockchain architectures, Roll-DPoS addresses a
number of limitations of the previous DPoS framework.
IoTeX is currently working on the implementation optimiza-
tions as well as large-scale simulations of the Roll-DPoS
consensus scheme towards the next release of our testnet.

APPENDIX A
A.1 Tate Pairing on Elliptic Curves
Let Fq be a finite field with q = pν elements, where p >
3 is a prime and ν is a positive integer. An elliptic curve
E(Fq) is the set of solutions (x, y) over Fq satisfying an
equation of the form E : y2 = x3 + ax + b, where a, b ∈ Fq
and 4a3 + 27b2 ∈ F∗q , together with an additional point at
infinity, denoted by O. Note that the same equation also
defines curves over Fqk for k > 0. Let #E(Fqk) denote the
number of points on an elliptic curveE(Fqk), which is called
the order of the curve over the field Fqk . The points on an
elliptic curve form an (additive) Abelian group, where O is
the identity element and the group operation is given by
the well known chord-and-tangent rule [46]. The order of a
point P ∈ E is defined as the smallest non-negative integer
n such that nP = O. For a given integer n, the set E[n] of
all points P ∈ E such that nP = O is called an n-torsion
group. We say that E[n] has embedding degree k if n divides
qk − 1, but does not divide qi − 1 for any 0 < i < k. In this
paper we assume k > 1 and only consider curves where k
is even for efficient implementation.

Tate pairing is defined in terms of divisors of a ratio-
nal function. For our purpose, a divisor is a formal sum
D =

∑
P∈E aP 〈P 〉 of points on the curve E(Fqk). The

degree of a divisor D is the sum deg(D) =
∑
P∈E aP .

The set of divisors forms an Abelian group by the addi-
tion of corresponding coefficients in their formal sums. Let
f : E(Fqk)→ Fqk be a rational function on the elliptic curve,
then the divisor of f is div(f) ≡

∑
P∈E ordP (f)〈P 〉, where

ordP (f) is the order of the zero or pole of f at P . Let D
be a divisor of degree zero, the evaluation of the rational
function f at D is defined as f(D) ≡

∏
P∈E f(P )aP . A

divisor D is called a principal divisor if D = div(f) for some
rational function f . A divisorD =

∑
P∈E aP 〈P 〉 is principal

if and only if deg(D) = 0 and
∑
P∈E aPP = O. Two

divisors D1 and D2 are equivalent (i.e., D1 ∼ D2) if their
difference D1 −D2 is a principal divisor. Let P ∈ E(Fq)[n]
where n is coprime to q and Q ∈ E(Fqk). Let DP be a
divisor equivalent to 〈P 〉 − 〈O〉 and therefore there is a
rational function fn,P ∈ Fq(E)∗ such that div(fn,P ) =
nDP = n〈P 〉 − n〈O〉. Let DQ be a divisor equivalent to
〈Q〉 − 〈O〉 with its support disjoint from div(fn,P ). The
Tate pairing [25] is a well defined, non-degenerate, bilinear
map en : E(Fq)[n] × E(Fqk)/nE(Fqk) → F∗qk/(F

∗
qk)n given

by en(P,Q) = fn,P (DQ). The computation of fn,P (DQ)
is achieved by an application of Miller’s algorithm [41],
whose output is only defined up to n-th powers in F∗qk
which is usually undesirable in practice since many pairing-
based protocols require a unique pairing value. According
to Theorem 1 in [6], one can define reduced Tate pairing as
e(P,Q) = fn,P (Q)(q

k−1)/n. The extra powering required
to compute the reduced pairing is referred to as the final
exponentiation.

A.2 Multibase Number Representation

Various multibase number representations (MSRs) have re-
cently been proposed to accelerate elliptic curve scalar mul-
tiplication, see [20], [21], [36], [39] for example. The basic
idea behind MSR is to record a scalar in a very compact and
sparse form and therefore significantly reduce the number
of point additions during the computation of scalar multi-
plication. In [39], Longa and Miri introduced the following
generic multibase representation for a scalar n:

n =
m∑
i=1

ni

J∏
j=1

a
ci(j)
j ,

where (1) bases a1 6= a2 6= · · · 6= aJ are positive primes
(a1 is called the main base) and m is the length of the
expansion; (2) ni are signed digits from a given set D; (3)
c1(j) ≥ c2(j) ≥ · · · ≥ cm(j) ≥ 0 for each j from 2
to J ; and (4) c1(1) > c2(1) > · · · > cm(1) > 0. Based
on the above multibase representation, Longa et al. [36],
[39] proposed Multibase Non-Adjacent Form (mbNAF) and its
window-based variants including Window-w Multibase Non-
Adjacent Form (wmbNAF) and Fractional Window-w Multibase
Non-Adjacent Form (Frac-wmbNAF). Combined with opti-
mized composite operations and precomputation schemes
[38], the multibase methods have set new speed records for
computing the elliptic curve scalar multiplication [36].

A.3 A Multibase Variant of Miller’s Algorithm

We propose a multibase variant of Miller’s algorithm and
show how to efficiently extract the required rational func-
tions in this case. Considering that one inversion is required
for each group operation in the process of computing Tate
pairings, and the calculation of the inversion of an ele-
ment in large characteristic is usually quite expensive, we
use Jacobian coordinates to represent points on an elliptic
curve instead of affine coordinates. Moreover, we also em-
ploy the Frac-wmbNAF method [36] to record the scalar,
which has been shown to achieve the highest performance
among window-based methods for standard elliptic curves
in Weierstrass form.
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Algorithm 1. A Multibase Variant of Miller’s Algorithm for Pairing Computation
Input: n = (n

(bl)
l , · · · , n(b2)

2 , n
(b0)
0 ), where n

(bi)
i ∈ D and bi ∈ A.

P = (xP , yP ) ∈ E(Fq)[n] and Q = (xQ, yQ) ∈ E(Fqk ).
Output: e(P,Q) = fn,P (Q)(q

k−1)/n.
[Precomputation]:
1. Compute Pi = iP for i ∈ {1, 3, · · · , t}, where t ≥ 3 is an odd integer
2. Compute f±i = f±i,P (Q) for i ∈ {1, 3, · · · , t}, where div(fi) = i〈P 〉 − 〈iP 〉 − (i− 1)〈O〉
[Main Loop]:
3. f ′ ← f

n
(bl)

l

, T ← P
n
(bl)

l

4. for i← l− 1 downto 0 do

5. if bi = 2, then f ′ ← f ′2 · lT,T (Q)

v2T (Q)
, T ← 2T

6. else f ′ ← f ′bi · lT,T (Q)

v2T (Q)
· l2T,T (Q)

v3T (Q)
· l2T,3T (Q)

v5T (Q)
· · ·

l2T,(bi−2)T (Q)

vbiT
(Q)

, T ← biT

7. if n(bi)
i 6= 0 then

8. if n(bi)
i > 0, then P ′ ← P

n
(bi)
i

; else P ′ ← −P
−n

(bi)
i

9. f ′ ← f ′ · f
n
(bi)
i

·
lT,P ′ (Q)

vT+P ′ (Q)
, T ← T + P ′

10. return f ′(q
k−1)/n

Let A = {a1, a2, · · · , aJ} be a set of bases, where a1 = 2
and a2 6= a3 6= · · · 6= aJ are positive odd primes. Let
D = {0,±1,±3, · · · ,±t} be a digit set, where t ≥ 3 is an
odd integer. Let P ∈ E(Fq)[n] and Q ∈ E(Fqk), where n is
a prime. Assume that n is represented by the Frac-wmbNAF
method as (n

(bl)
l , · · · , n(b2)2 , n

(b0)
0 ), where n(bi)i ∈ D is the

i-th digit and the superscript bi ∈ A denotes the base
associated to the corresponding digit for 0 ≤ i ≤ l. With
the above notations, the multibase variant of Miller’s algo-
rithm is described in Algorithm 1. The algorithm includes
two phases: the precomputation phase that calculates the
required points and evaluates the corresponding rational
functions at the image point Q, and the main loop that uses
the results of the precomputation phase to compute the Tate
pairing efficiently.

In the following subsections, we will explain how to
perform the precomputation and the main loop efficiently.
Let I , M and S denote an inversion, a multiplication and a
squaring in Fq , and let Mk and Sk denote a multiplication
and a squaring in the large field Fqk . We also assume that an
elliptic curve E over Fq admits a twist E′ of degree w with
w | k. Letting d = k/w, then we can take Q to be a point
on the twist curve E′(Fqd) in this case, which allows us to
apply the efficient denominator elimination technique due
to Barreto, Lynn and Scott [7]. Using twist curves, we can
work within the groups E(Fq)[n] and E′(Fqd) at all times
except when a pairing is being evaluated, where we use the
twist map and operate in Fqk .

A.3.1 Precomputation Method

The precomputed points Pi and function values fi are ex-
tensively used to accelerate the computation of Tate pairing
in the above multibase variant of Miller’s algorithm. Longa
and Miri [38] proposed a highly efficient precomputation
scheme for elliptic curve cryptosystems over prime fields,
which is based on the combination of the traditional chain
P → 2P → 3P → 5P → · · · → tP and the special
point addition formula with the same z-coordinate intro-
duced by Meloni [40]. In this subsection, we show how
to efficiently obtain the function values f±i = f±i,P (Q)
for i ∈ {1, 3, · · · , t} and Q ∈ E′(Fqd) based on the

precomputation scheme in [38]. Considering that the pre-
computed table {P, 3P, · · · , tP} are stored in affine coor-
dinates, it is not hard to find that fi can be computed
more efficiently in affine coordinates instead of projective
coordinates. Assuming that jP = (xjP , yjP ) for any j ∈ Z∗
and Q = (xQ, yQ), we first have f1 = f1,P (Q) = 1 and
f−1 = f−1,P (Q) = 1

xQ−xP
. Using the parabola method

proposed by Eisenträger et. al. [22], we can calculate f±3
simultaneously as follows:

f3 = f3,P (Q) =
lP,P (Q)

v2P (Q)
·
l2P,P (Q)

v3P (Q)

=
(xQ − xP )2 + (λ1 + λ2) [λ1(xQ − xP )− (yQ − yP )]

xQ − x3P

=
(xQ − xP )2 + λ1(λ1 + λ2)(xQ − xP )− (λ1 + λ2)(yQ − yP )

xQ − x3P

=
(xP − x2P )(xQ − xP )2 + (3x2

P + a)(xQ − xP ) + 2y2P − 2yP yQ

(xP − x2P )(xQ − x3P )
,

where λ1 and λ2 are the slopes of the lines lP,P and l2P,P ,
respectively. Using the fact that −jP = (xjP ,−yjP ) for any
j ∈ Z∗, we can obtain f−3 virtually for free by reusing the
intermediate results during the computation of f3:

f−3 =
(xP − x2P )(xQ − xP )2 + (3x2

P + a)(xQ − xP ) + 2y2P + 2yP yQ

(xP − x2P )(xQ − x3P )
.

Note that (3x2P +a) and 2y2P can be obtained from the com-
putation of 2P and the denominator (xP − x2P )(xQ − x3P )
can be eliminated by the final exponentiation. Therefore, we
only need to compute the numerators of f±3 and the compu-
tation cost is dM , with a precomputation of 1Sd+(d+k)M .

Similarly, for an odd integer s satisfying 5 ≤ s ≤ t, f±s
can be computed simultaneously as follows:

fs = fs,P (Q) = f2 · fs−2 ·
l2P,(s−2)P (Q)

vsP (Q)

= f2 · fs−2 ·
(yQ − y2P )− λs(xQ − x2P )

vsP (Q)

= f2 · fs−2 ·
(x(s−2)P − x2P )(yQ − y2P )− (y(s−2)P − y2P )(xQ − x2P )

(x(s−2)P − x2P )(xQ − xsP )
,

and

f−s = f−2·f−(s−2)·
(x(s−2)P − x2P )(yQ + y2P ) + (y(s−2)P − y2P )(xQ − x2P )

(x(s−2)P − x2P )(xQ − xsP )
,
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where λs is the slope of the line l2P,(s−2)P . Hence, given
f±(s−2), we need 2Mk + (k + d + 1)M to calculate the
numerators of f±s simultaneously.

We summarize the precomputation scheme in Algorithm
2. Again, we only consider the computations of the numera-
tors of f±i due to the efficient denominator elimination tech-
nique [7]. Note that Pi, i ∈ {1, 3, · · · , t} can be calculated
with 1I + 9(t−1)

2 M + (t + 5)S using the precomputation
method (Scheme 2) in [38]. Moreover, we also need to
cost another 4M to recover the affine coordinates of 2P
that are used in the computation of f±i. Therefore, the
total cost of the precomputation scheme in Algorithm 2 is
(t−3)Mk+1Md+1I+

(
(5t− 2) + (k+d)(t−1)

2

)
M+(t+5)S.

A.3.2 Encapsulated Composite Operations and Line Com-
putations
In [17], Chatterjee et. al. introduced the idea of encapsulating
elliptic curve group operations (i.e., point addition and
point doubling) and line computations, and applied this
idea to improve the computation of Tate pairing for two
families of pairing-friendly curves with embedding degree
2. It is also straightforward to adapt this idea to other
pairing-friendly curves which admit twists of degree w
with w | k. Moreover, fast doubling and mixed-addition
formulae proposed in [37] can be used to further improve
Chatterjee et. al.’s algorithms. In this subsection, we
show how to efficiently perform the main loop in the
multibase variant of Miller’s algorithm by encapsulating
fast composite operations and line computations.

Encapsulated Point Mixed-Addition and Line Computation:
Let T = (X1, Y1, Z1) and P ′ = (x2, y2) be two points in
Jacobian and affine coordinates, respectively, on the elliptic
curve E(Fq). The mixed addition T +P ′ = (X3, Y3, Z3) can
be computed efficiently as follows [37]:

X3 = α2 − 4β3 − 8X1β
2,

Y3 = α(4X1β
2 −X3)− 8Y1β

3,

Z3 = (Z1 + β)2 − Z2
1 − β2,

where α = 2(Z3
1y2 − Y1) and β = Z2

1x2 −X1. In this case,
the evaluation of the line function lT,T at the image point Q
can be calculated as follows:

lT,P ′ (Q) = (yQ − y2)−
2(Z3

1y2 − Y1)

Z3

· (xQ − x2)

=
Z3yQ − αxQ + (αx2 − Z3y2)

Z3

, (1)

where Z3 and α are available from the point mixed-
addition. The encapsulated point mixed-addition and line
computation are given in Algorithm 3, which requires
(9 + d + k)M + 4S. Note that in the case of d = 1 (i.e.,
xQ ∈ Fq) we can save one more field multiplication by
combining the terms involving α in the above equation (1).

Encapsulated Point Doubling and Line Computation:
Let T = (X1, Y1, Z1) be a point in Jacobian coordinates
on the elliptic curve E(Fq). The point doubling 2T =
(X3, Y3, Z3) can be computed efficiently as follows [37]:

X3 = α2 − 2β,

Y3 = α(β −X3)− 8Y 4
1 ,

Z3 = (Y1 + Z1)2 − Y 2
1 − Z2

1 ,

where α = 3X2
1 + aZ4

1 and β = 2
[
(X1 + Y 2

1 )2 −X2
1 − Y 4

1

]
for a general a, and α = 3(X1 + Z2

1 )(X1 − Z2
1 ) and

β = 4X1Y
2
1 if a = −3. In this case, the evaluation of the

line function lT,T at the image point Q can be calculated as
follows:

lT,T (Q) =

(
yQ −

Y1

Z3
1

)
−

3X2
1 + aZ4

1

Z3

·
(
xQ −

X1

Z2
1

)
=

(Z3Z
2
1 )yQ −

(
(2Y 2

1 − αX1) + (αZ2
1 )xQ

)
Z3Z2

1

, (2)

where Z3, Z
2
1 , Y

2
1 and α are available from the point

doubling. The encapsulated point doubling and line
computation are given in Algorithm 4, where some
intermediate results of the point doubling, as shown in the
boxes, can be reused for the line computation. Algorithm 4
requires (5 + d+ k)M + 8S to compute the point doubling
and evaluate the line function. In the case a is small, this
cost is (4 + d+ k)M + 8S and for the case a = −3, this cost
is (6 + d + k)M + 5S. Note that in the case of d = 1 (i.e.,
xQ ∈ Fq) we can save two more field multiplications by
combining the terms involving α in the above equation (2).

Encapsulated Point Tripling and Line Computation:
Let T = (X1, Y1, Z1) be a point in Jacobian coordinates
on the elliptic curve E(Fq). The point tripling 3T =
(X3, Y3, Z3) can be computed efficiently as follows [37]:

X3 = 16Y 2
1 (2β − 2α) + 4X1ω

2,

Y3 = 8Y1[(2α− 2β)(4β − 2α)− ω3],

Z3 = (Z1 + ω)2 − Z2
1 − ω2,

where 2α = (θ+ω)2− θ2−ω2, 2β = 16Y 4
1 , θ = 3X2

1 + aZ4
1

and ω = 6
[
(X1 + Y 2

1 )2 −X2
1 − Y 4

1

]
− θ2 for a general a.

For the case when a = −3, θ and ω can be computed more
efficiently as θ = 3(X1 +Z2

1 )(X1−Z2
1 ) and ω = 12X1Y

2
1 −

θ2. Similar to the precomputation procedure, we can apply
the parabola method [22] again to simplify the required line
function f3,T . However, in the main loop of Algorithm 2
the points T and Q are represented in Jacobian and affine
coordinates, respectively. Letting λ′1 and λ′2 be the slopes of
the lines lT,T and l2T,T , we can obtain λ′1 = θ

2Y1Z1
and λ′1 +

λ′2 =
8Y 3

1

Z1ω
. In this case, the evaluation of the line function

f3,T at the image point Q can be computed as follows:

f3,T (Q) =
lT,T (Q)

v2T (Q)
·
l2T,T (Q)

v3T (Q)

=

(
xQ − X1

Z2
1

)2

+ (λ′1 + λ′2)

[
λ′1

(
xQ − X1

Z2
1

)
−

(
yQ − Y1

Z3
1

)]
xQ − x3T

=
(xQZ

2
1 −X1)

[
ω(xQZ

2
1 −X1) + 4Y 2

1 θ
]
+ 8Y 4

1 − (2Y1Z1)
3yQ

ωZ4
1 (xQ − x3T )

(3)

=
(ωZ4

1 )x
2
Q + Z2

1 (4Y
2
1 θ − 2ωX1)xQ +X1(ωX1 − 4Y 2

1 θ) + 8Y 4
1 − (2Y1Z1)

3yQ

ωZ4
1 (xQ − x3T )

,

(4)

where θ, ω, 4Y 2
1 , Z

2
1 , 8Y

4
1 and Z4

1 are available from the
point tripling. Due to space limitations, we only describe
the encapsulated point tripling and line computation for
the case a = −3 in the following Algorithm 5, where some
intermediate results of the point tripling, as shown in the
boxes, can be reused for the line computation. However,
it is also straightforward to derive the explicit formula for
a general a. Assuming that x2Q is precomputed with 1Sd,
Algorithm 3 requires (14 + 2d + k)M + 9S to calculate the
point tripling and evaluate the line functions. In the case a
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Algorithm 2. Precomputation Scheme for the Multibase Variant of Miller’s Algorithm
Input: P = (xP , yP ) ∈ E(Fq)[n] and Q = (xQ, yQ) ∈ E(Fqk ).
Output: Pi = iP and the numerators f ′±i of f±i = f±i,P (Q) for i ∈ {1, 3, · · · , t},

where t ≥ 3 is an odd integer and div(fi) = i〈P 〉 − 〈iP 〉 − (i− 1)〈O〉.
1. Compute Pi = iP = (xiP , yiP ) for i ∈ {1, 3, · · · , t} and 2P = (x2P , y2P ) using the

precomputation method proposed in [38] (see pp. 238-240 of [38])
2. f ′1 ← 1, f ′−1 ← 1

3. T1 ← −(2y2P + (3x2
P + a)(xQ − xP )), T2 ← 2yP yQ

f ′2 ← T1 + T2, f ′−2 ← T1 − T2

4. T1 ← xQ − xP , T2 ← T1

(
(xP − x2P )T1 + (3x2

P + a)
)
+ 2y2P , T3 ← 2yP yQ

f ′3 ← T2 − T3, f ′−3 ← T2 + T3

5. for s from 5 to t do
6. T1 ← x(s−2)P − x2P , T2 ← T1yQ, T3 ← T1y2P + (y(s−2)P − y2P )(xQ − x2P )

7. f ′s ← f ′2 · f ′s−2 · (T2 − T3), f ′−s ← f ′−2 · f ′−(s−2)
· (T2 + T3), s← s+ 2

8. return Pi and f ′±i for i ∈ {1, 3, · · · , t}

Algorithm 3. Encapsulated Point Mixed-Addition and Line Computation
Input: T = (X1, Y1, Z1) in Jacobian coordinates, P ′ = (x2, y2) in affine coordinates on

E(Fq) and Q = (xQ, yQ) ∈ E(Fqk ).
Output: T + P ′ = (X3, Y3, Z3) in Jacobian and the numerator lADD of lT,P ′ (Q).

Point Mixed-Addition
1. T1 ← Z2

1 7. Z3 ← Z3 − T1 13. T3 ← 8 · T1 19. X3 ← T 2
1

2. T2 ← x2 · T1 8. Z3 ← Z3 − T3 14. T2 ← T2 · T3 20. X3 ← X3 − T2

3. T2 ← T2 −X1 9. T1 ← Z1 · T1 15. T4 ← X1 · T3 21. T4 ← T4/2

4. T3 ← T 2
2 10. T1 ← y2 · T1 16. Y3 ← Y1 · T2 22. T4 ← T4 −X3

5. Z3 ← Z1 + T2 11. T1 ← T1 − Y1 17. T2 ← T2/2 23. T4 ← T1 · T4

6. Z3 ← Z2
3 12. T1 ← T1 + T1 18. T2 ← T2 + T4 24. Y3 ← T4 − Y3

Line Computation
1. T2 ← x2 · T1 3. T2 ← T2 − T3 5. Tk ← yQ · Z3 7. lADD ← Tk + T2

2. T3 ← y2 · Z3 4. Td ← xQ · T1 6. Tk ← Tk − Td

Return (X3, Y3, Z3) and lADD

is small, this cost is (12 + 2d+ k)M + 11S and for a general
a, this cost is (13 + 2d + k)M + 11S. Note that in the case
of d = 1 or 2 (i.e., xQ ∈ Fq or Fq2 ) it is more efficient to
evaluate the line functions using equation (3) instead of (4),
which can save 3M + 1S and 1M + 1S, respectively.
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ficient Pairing Computation on Supersingular Abelian Varieties”,
Design, Codes and Cryptography, 42:239-271, 2007.

[6] P.L.S.M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
Algorithm for Pairing-Based Cryptosystems”, Advance in Cryptology
- CRYPTO’2002, ser. LNCS 2442, M. Yung (ed.), Berlin, Germany:
Springer-Verlag, pp. 354-368, 2002.

[7] P.L.S.M. Barreto, B. Lynn, and M. Scott, “On the Selection of Pairing-
Friendly Groups”, Selected Areas in Cryptography - SAC’2002, ser.
LNCS 3006, M. Matsui and R. Zuccherato (eds.), Berlin, Germany:
Springer-Verlag, pp. 17-25, 2003.

[8] BitShares. https://bitshares.org/.
[9] G. R. Blakley, ”Safeguarding Cryptographic Keys”, International

Workshop on Managing Requirements Knowledge, IEEE Computer
Society, pp. 313-317, 1979.

[10] A. Boldyreva, ”Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme”, Public Key Cryptography – PKC 2003, ser. LNCS 2567, Y.G.
Desmedt (eds.), Berlin, Germany: Springer-Verlag, pp. 31-46, 2003.

[11] D. Boneh, ”BLS Multi-Signatures With Public-Key Aggregation”,
https://crypto.stanford.edu/∼dabo/pubs/papers/BLSmultisig.
html, 2018.

[12] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, ”Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps”, Advances in
Cryptology – EUROCRYPT’03, ser. LNCS 2656, E. Biham (Ed.),
Berlin, Germany: Springer-Verlag, pp. 416-432, 2003.

[13] D. Boneh, B. Lynn, and H. Shacham, ”Short Signatures from the
Weil Pairing”, Advances in Cryptology – ASIACRYPT’01, ser. LNCS
2248, C. Boyd (Ed.), Berlin, Germany: Springer-Verlag, pp. 514-532,
2001.
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Algorithm 4. Encapsulated Point Doubling and Line Computation
Input: T = (X1, Y1, Z1) in Jacobian coordinates on E(Fq) and Q = (xQ, yQ) ∈ E(Fqk ).
Output: 2T = (X3, Y3, Z3) in Jacobian coordinates and the numerator lDBL of lT,T (Q).

Point Doubling
a = −3 General a

1. T1 ← Z2
1 11. T4 ← X1 · T3 1. T1 ← Z2

1 13. T5 ← T 2
5

2. T2 ← X1 + T1 12. T4 ← 4 · T4 2. T2 ← T 2
1 14. T4 ← T5 − T4

3. T3 ← X1 − T1 13. X3 ← T 2
2 3. T2 ← a · T2 15. T5 ← T 2

3

4. T2 ← T2 · T3 14. X3 ← X3 − T4 4. T4 ← X2
1 16. T4 ← T4 − T5

5. T2 ← 3 · T2 15. X3 ← X3 − T4 5. T4 ← 3 · T4 17. T4 ← T4 + T4

6. T3 ← Y 2
1 16. T4 ← T4 −X3 6. T2 ← T2 + T4 18. X3 ← T 2

2

7. Z3 ← Y1 + Z1 17. T4 ← T2 · T4 7. T3 ← Y 2
1 19. X3 ← X3 − T4

8. Z3 ← Z2
3 18. Y3 ← T 2

3 8. Z3 ← Y1 + Z1 20. X3 ← X3 − T4

9. Z3 ← Z3 − T1 19. Y3 ← 8 · Y3 9. Z3 ← Z2
3 21. T5 ← 8 · T5

10. Z3 ← Z3 − T3 20. Y3 ← T4 − Y3 10. Z3 ← Z3 − T1 22. T4 ← T4 −X3

11. Z3 ← Z3 − T3 23. T4 ← T2 · T4

12. T5 ← X1 + T3 24. Y3 ← T4 − T5

Line Computation
1. T4 ← Z3 · T1 3. T1 ← T1 · T2 5. T3 ← T3 − T2 7. Td ← Td + T3 9. lDBL ← Tk − Td

2. T3 ← T3 + T3 4. T2 ← T2 ·X1 6. Td ← xQ · T1 8. Tk ← yQ · T4

Return (X3, Y3, Z3) and lDBL

Algorithm 5. Encapsulated Point Tripling and Line Computation (a = −3)
Input: T = (X1, Y1, Z1) in Jacobian coordinates on E(Fq) and Q = (xQ, yQ) ∈ E(Fqk ).
Output: 3T = (X3, Y3, Z3) in Jacobian coordinates and the numerator lTRL of f3,T (Q).

Point Tripling

1. T1 ← Z2
1 9. T4 ← 3 · T4 17. Z3 ← Z3 − T1 25. T8 ← T3 · T6

2. T2 ← X1 + T1 10. T5 ← T 2
2 18. T5 ← T 2

4 26. X3 ← X3 + T8

3. T3 ← X1 − T1 11. T4 = T4 − T5 19. Z3 ← Z3 − T5 27. X3 ← 4 ·X3

4. T2 ← T2 · T3 12. T6 = T2 + T4 20. T6 ← T6 − T5 28. T8 ← T6 + T7

5. T2 ← 3 · T2 13. T6 = T 2
6 21. X3 ← X1 · T5 29. T8 ← T8 · (−T6)

6. Y3 ← 2Y1 14. T6 = T6 − T5 22. T5 ← T4 · T5 30. T8 ← T8 − T5

7. T3 ← Y 2
3 15. Z3 = Z1 + T4 23. T7 ← T 2

3 31. Y3 ← 4 · Y3

8. T4 ← X1 · T3 16. Z3 = Z2
3 24. T6 ← T7 − T6 32. Y3 ← Y3 · T8

Line Computation
1. T5 ← X1 · T4 6. T5 ← T1 · T5 11. T1 ← T1 · T4 16. T2 ← T2 + T2

2. T6 ← T2 · T3 7. T7 ← T7/2 12. Td′ ← x2
Q · T1 17. T3 ← T 2

2

3. T6 ← T5 − T6 8. T6 ← T6 + T7 13. Td ← Td + Td′ 18. T3 ← T2 · T3

4. T5 ← −(T5 + T6) 9. Td ← xQ · T5 14. Td ← Td + T6 19. Tk ← yQ · T3

5. T6 ← X1 · T6 10. T1 ← T 2
1 15. T2 ← Y1 · Z1 20. lTRL ← Td − Tk

Return (X3, Y3, Z3) and lTRL
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